thermoelectricity$82885$ - translation to ελληνικό
Diclib.com
Λεξικό ChatGPT
Εισάγετε μια λέξη ή φράση σε οποιαδήποτε γλώσσα 👆
Γλώσσα:

Μετάφραση και ανάλυση λέξεων από την τεχνητή νοημοσύνη ChatGPT

Σε αυτήν τη σελίδα μπορείτε να λάβετε μια λεπτομερή ανάλυση μιας λέξης ή μιας φράσης, η οποία δημιουργήθηκε χρησιμοποιώντας το ChatGPT, την καλύτερη τεχνολογία τεχνητής νοημοσύνης μέχρι σήμερα:

  • πώς χρησιμοποιείται η λέξη
  • συχνότητα χρήσης
  • χρησιμοποιείται πιο συχνά στον προφορικό ή γραπτό λόγο
  • επιλογές μετάφρασης λέξεων
  • παραδείγματα χρήσης (πολλές φράσεις με μετάφραση)
  • ετυμολογία

thermoelectricity$82885$ - translation to ελληνικό

MATERIALS WHOSE TEMPERATURE VARIANCE LEADS TO VOLTAGE CHANGE
Thermo-Electricity; Thermoelectrics; Thermoelectric figure of merit; Thermoelectric Devices and Materials; Solar thermoelectricity; Thermoelectrical; Thermoelectric power factor; Thermoelectric material; Applications of thermoelectric materials
  • SnSe performance metrics<ref name="L-D. Zhao 2014"/>
  • PEDOT:PSS-based model embedded into a glove to generate electricity by body heat

thermoelectricity      
n. θερμοηλεκτρισμός

Ορισμός

Thermo-electricity
Electric energy, electro-motive force or electrification produced from heat energy by direct conversion. It is generally produced in a circuit composed of two electric conductors of unlike material, which circuit must possess at least two junctions of the unlike substances. By heating one of these to a higher temperature than that of the other, or by maintaining one junction at a different temperature from that of the other a potential difference is created accompanied by an electric current. In many cases differential application of heat to an identical material will develop potential difference. This effect, the converse of the Thomson effect, is not used to produce currents, as in a closed circuit the potential differences due to differential heating would neutralize each other.

Βικιπαίδεια

Thermoelectric materials

Thermoelectric materials show the thermoelectric effect in a strong or convenient form.

The thermoelectric effect refers to phenomena by which either a temperature difference creates an electric potential or an electric current creates a temperature difference. These phenomena are known more specifically as the Seebeck effect (creating a voltage from temperature difference), Peltier effect (driving heat flow with an electric current), and Thomson effect (reversible heating or cooling within a conductor when there is both an electric current and a temperature gradient). While all materials have a nonzero thermoelectric effect, in most materials it is too small to be useful. However, low-cost materials that have a sufficiently strong thermoelectric effect (and other required properties) are also considered for applications including power generation and refrigeration. The most commonly used thermoelectric material is based on bismuth telluride (Bi
2
Te
3
).

Thermoelectric materials are used in thermoelectric systems for cooling or heating in niche applications, and are being studied as a way to regenerate electricity from waste heat. Research in the field is still driven by materials development, primarily in optimizing transport and thermoelectric properties.